Material Teórico - Módulo Progressões Aritméticas

PAs Inteiras e Soma dos Termos de uma PA

Primeiro Ano

Autor: Prof. Ulisses Lima Parente Autor: Prof. Antonio Caminha M. Neto

1 A soma dos termos de uma PA

Começamos este material calculando a soma dos termos de uma PA finita. Nesse sentido, a fórmula colecionada na proposição abaixo é conhecida como a **fórmula da soma dos** k **primeiros termos** de uma PA.

Para seu enunciado, é conveniente introduzirmos a notação

$$\sum_{k=1}^{n} a_k \tag{1}$$

para denotar a soma $a_1 + a_2 + \cdots + a_n$ (ou simplesmente a_1 , quando n = 1). Aqui, a letra grega maiúscula Σ (lê-se sigma) corresponde ao nosso S (de soma), de sorte que (1) denota a soma dos termos a_k , com k variando de 1 a n.

Proposição 1. Se $(a_k)_{k\geq 1}$ é uma PA de razão r, então:

$$\sum_{k=1}^{n} a_k = \frac{n(a_1 + a_n)}{2}, \, \forall n \ge 1.$$

Prova. Se $S_n = \sum_{k=1}^n a_k$, temos:

$$S_n = a_1 + a_2 + \dots + a_{n-1} + a_n.$$

Por outro lado, escrevendo os mesmos termos na ordem inversa, temos:

$$S_n = a_n + a_{n-1} + \dots + a_2 + a_1.$$

Somando membro a membro as duas igualdades acima, chegamos a

$$2S_n = (a_1 + a_n) + (a_2 + a_{n-1}) + \ldots + (a_{n-1} + a_2) + (a_n + a_1).$$

Agora, utilizando o resultado da Proposição 8 do material teórico da aula anterior, obtemos (quer seja n par ou ímpar):

$$2S_n = \underbrace{(a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n) + (a_1 + a_n)}_{n \text{ vezes}}$$

$$\implies 2S_n = n(a_1 + a_n)$$

$$\implies S_n = \frac{n(a_1 + a_n)}{2}.$$

Uma maneira alternativa de expressar a fórmula acima para a soma $S_n = \sum_{k=1}^n a_k$ é obtida substituindo a expressão para o termo geral da PA. Assim,

$$a_1 + a_n = a_1 + (a_1 + (n-1)r) = 2a_1 + (n-1)r,$$

de sorte que

$$S_n = \sum_{k=1}^n a_k = \frac{n(a_1 + a_n)}{2}$$

$$= \frac{n[2a_1 + (n-1)r]}{2}$$

$$= na_1 + \frac{n(n-1)r}{2}.$$
(2)

A seguir, discutimos algumas aplicações das fórmulas acima para a soma dos termos de uma PA.

Exemplo 2. Calcule a soma dos quinze primeiros termos da PA (3,7,11,...).

Solução. Observe que $a_1 = 3$ e r = 7 - 3 = 4. Agora, pela observação feita logo após a Proposição 1, temos:

$$S_{15} = 15a_1 + \frac{15 \cdot 14}{2} \cdot r$$

$$= 15 \cdot 3 + \frac{15 \cdot \cancel{14}}{\cancel{2}} \cdot 4 =$$

$$= 45 + 15 \cdot 7 \cdot 4$$

$$= 45 + 420 = 465.$$

Exemplo 3. Calcule a soma dos n primeiros números *ímpares*.

Solução. Queremos calcular a soma S_n , dos n primeiros termos da PA (1, 3, 5, ...). Como $a_1 = 1$ e r = 3 - 1 = 2, temos:

$$a_n = a_1 + (n-1) \cdot 2 = 1 + (n-1) \cdot 2 = 2n-1$$

e, daí,

$$S_n = \frac{(a_1 + a_n)n}{2} = \frac{(1 + (2n - 1))n}{2} = \frac{2n^2}{2} = n^2.$$

Alternativamente, utilizando uma vez mais a fórmula alternativa para S_n , deduzida logo após a prova da proposição anterior, obtemos:

$$S_n = na_1 + \frac{n(n-1)}{2} \cdot r$$
$$= n \cdot 1 + \frac{n(n-1)}{2} \cdot 2$$
$$= n + n(n-1) = n^2.$$

Revisitemos o Exemplo 11 do material teórico da aula anterior.

Exemplo 4. Mostramos, abaixo, as quatro primeiras linhas de uma tabela infinita, formada por números naturais, onde, para i > 1, a linha i começa à esquerda por um número duas unidades maior que aquele que inicia a linha i-1, e tem dois números a mais que a linha i-1. Calcule a soma dos números escritos na centésima linha.

Solução. Como no material da aula anterior, a primeira coluna forma uma PA $(a_k)_{k\geq 1}$, de termo inicial 1 e razão 2. Portanto, seu termo inicial é

$$a_{100} = a_1 + (100 - 1) \cdot 2 = 1 + 198 = 199.$$

Agora, as quantidades de termos das linhas, 1, 3, 5, 7, ..., também formam uma PA de termo inicial 1 e razão 2, de sorte que a centésima linha também tem 199 termos.

A centésima linha é, pois, uma PA (b_k) de 199 termos, com termo inicial 199 e razão também 2. Logo, (2) fornece

$$b_1 + b_2 + \dots + b_{199} = 199 \cdot b_1 + \frac{199(199 - 1) \cdot 2}{2}$$

= $199^2 + 199 \cdot 198 = 79003$.

2 Progressões aritméticas de termos inteiros

Se uma PA $(a_k)_{k\geq 1}$ é tal que $a_1\in\mathbb{Z}$ e $r\in\mathbb{Z}$, então, pela fórmula do termo geral, temos

$$a_n = a_1 + (n-1)r \in \mathbb{Z},$$

uma vez que o produto e a soma de números inteiros ainda são inteiros. Em palavras, se o primeiro termo e a razão de uma PA forem números inteiros, então todos os seus termos também o serão.

Reciprocamente, se $(a_k)_{k\geq 1}$ é uma PA cujos elementos são todos inteiros, então temos que $r=a_2-a_1\in\mathbb{Z}$. De fato, para que uma PA $(a_k)_{k\geq 1}$ seja formada somente por inteiros, é necessário e suficiente que ela possua dois termos consecutivos inteiros (verifique este fato!). Abaixo seguem alguns exemplos que tratam de PAs formadas por termos inteiros.

Exemplo 5. Quantos são os múltiplos positivos de 13 menores do que 1000? Quanto vale sua soma?

 ${\bf Solução}.$ Os múltiplos positivos de 13 menores do que 1000 formam a PA

$$13, 26, 39, 52, \ldots, 13n,$$

onde 13n é o maior múltiplo de 13 que é menor ou igual a 1000. Agora,

$$13n \le 1000 \Longleftrightarrow n \le \frac{1000}{13}.$$

Dividindo 1000 por 13, obtemos:

$$1000 = 76 \cdot 13 + 12$$
,

de forma que o maior múltiplo de 13 que é menor ou igual a 1000 é $13 \cdot 76 = 988$. Portanto, há 76 múltiplos positivos de 13 menores do que 1000.

Para calcular a soma $S=13+26+\cdots+988,$ utilizamos a fórmula para a soma dos termos de uma PA:

$$S = \frac{(13 + 988)76}{2} = 1001 \cdot 38 = 38038.$$

O próximo exemplo é uma variação do anterior.

Exemplo 6. Quantos são os múltiplos de 7 compreendidos entre 1000 e 2000? Quanto vale a soma dos mesmos?

Solução. Como no exemplo anterior, os múltiplos positivos de 7 formam a PA

$$7, 14, 21, 28, \ldots, 7n, \ldots$$

Como $7n \ge 1000 \Leftrightarrow n \ge \frac{1000}{7}$ e

$$1000 = 142 \cdot 7 + 6,$$

concluímos que o menor múltiplo de 7 que é maior ou igual a 1000 é $7 \cdot 143 = 1001$.

Por outro lado, temos também $7n \le 2000 \Leftrightarrow n \le \frac{2000}{7}$,

$$2000 = 285 \cdot 7 + 5;$$

portanto, $7\cdot 285=1995$ é o maior múltiplo de 7 que é menor ou igual a 2000.

Os cálculos acima garantem que queremos calcular a soma

$$S = 7 \cdot 143 + 7 \cdot 144 + \dots + 7 \cdot 285,$$

na qual, há 285 - 143 + 1 = 143 parcelas. Podemos calcular S novamente com o auxílio da fórmula para a soma dos termos de uma PA. Pondo o fator 7 em evidência por simplicidade, obtemos:

$$S = 7 \cdot (143 + 144 + \dots + 285)$$
$$= 7 \cdot \frac{(143 + 285) \cdot 143}{2}$$
$$= 214214.$$

No próximo exemplo, o fato de que os termos da PA são inteiros é utilizado de forma decisiva.

Exemplo 7. A professora de João pediu que ele calculasse o décimo primeiro termo de uma progressão aritmética de números naturais. Infelizmente, ele esqueceu qual era o termo inicial e a razão. As únicas informações das quais ele lembrava eram que os termos da progressão não eram consecutivos, o primeiro termo era um múltiplo da razão e

$$a_4 + a_7 + a_{10} = 207.$$

Quanto vale o termo que João teria que calcular?

Solução. Aplicando a fórmula do termo geral de uma PA várias vezes, a primeira igualdade acima se transforma em:

$$(a_1 + 3r) + (a_1 + 6r) + (a_1 + 9r) = 207 \Longrightarrow$$

 $\Longrightarrow 3a_1 + 18r = 207$

ou, o que é o mesmo,

$$a_1 + 6r = 69. (3)$$

Como o primeiro termo é um múltiplo da razão, podemos escrever $a_1 = mr$, para algum natural m. Portanto,

$$69 = a_1 + 6r = mr + 6r = (m+6)r$$

e, daí, r divide 69. Como 69 = $3 \cdot 23$, devemos ter r=1, 3, 23 ou 69. Por outro lado, como os termos da PA não são consecutivos, devemos ter r>1. Por fim, uma vez que tais termos são naturais, devemos ter $a_1=69-6r>0$, o que descarta as possibilidades r=23 ou 69. Assim, r=3 e, daí,

$$a_1 = 69 - 6r = 69 - 6 \cdot 3 = 51.$$

Segue da fórmula para o termo geral que

$$a_{11} = a_1 + 10r = 51 + 10 \cdot 3 = 81.$$

Exemplo 8. Dois números inteiros são chamados primanos quando pertencem a uma progressão aritmética de números primos com pelo menos três termos. Por exemplo, os números 41 e 59 são primanos, pois pertencem à progressão aritmética (41,47,53,59), a qual contém somente números primos. Assinale a alternativa com dois números que não são primanos.

- (a) 7 e 11.
- (b) 13 e 53.
- (c) 41 e 131.
- (d) 31 e 43.
- (e) 23 e 41.

Solução. Veja que as sequências

$$(3,7,11);$$
 $(41,71,101,131);$ $(31,37,43)$ e $(23,41,59)$

são PAs formadas por números primos. Portanto, 7 e 11, 41 e 131, 31 e 43, 23 e 41 são pares de números primanos.

Por outro lado, se os números primos 13 e 53 pertencessem a uma PA formada somente por números primos, teríamos que a razão r dessa PA deveria ser um divisor da diferença 40=53-13. Sem perda de generalidade, podemos assumir r>0. Daí temos as possibilidades: $r=1,\ r=2,\ r=4,\ r=5,\ r=8,\ r=10,\ r=20$ ou r=40. Entretanto, é fácil checar que, em qualquer um dos casos acima, apareceriam termos compostos (i.e., não primos). Façamos algumas de tais verificações:

- (i) r = 2: 13 + 2 = 15, composto.
- (ii) r = 4: 13+4 = 17 é primo, mas 17+4 = 21 é composto.
- (iii) r=10: 13+10=23 é primo, mas 23+10=33 é composto.

Falando um pouco mais sobre progressões aritméticas que contêm números primos, a PA dos números ímpares $(1,3,5,\ldots)$ contém infinitos números primos, pois o conjunto dos números primos é infinito e o único número primo par é o 2.

O próximo exemplo mostra que nenhuma PA infinita e não constante de naturais pode ser composta inteiramente por primos.

Exemplo 9. Se (a, a+r, a+2r, ...) é uma PA infinita e não constante de naturais, prove que pelo menos um de seus termos é composto.

Prova. Podemos escrever o termo geral da PA como a+(n-1)r. Como a PA é não constante, temos r>0. Por outro lado, como ela é infinita e seus termos são todos naturais, temos a+(n-1)r>0 para todo $n\in\mathbb{N}$. Então, não podemos ter r<0, pois, se esse fosse o caso, teríamos a+(n-1)r<0 para n suficientemente grande. Logo, r>0.

Agora, basta mostrarmos que, dados $a, r \in \mathbb{N}$, é possível escolher n de forma que a + (n-1)r seja composto. Para tanto, veja que, se n = 2a + 1, então

$$a + (n-1)r = a + 2ar = a(1+2r).$$

Esse número é composto se a>1, mas pode ser primo se a=1. Entretanto, se a=1, então a+r>1, e podemos repetir o argumento acima escolhendo n=2(a+r)+2. Veja:

$$a + (n-1)r = (a+r) + (n-2)r$$

= $(a+r) + 2(a+r)$
= $3(a+r)$,

o qual é composto.

Apesar do exemplo anterior, trazemos ao conhecimento do leitor o seguinte resultado, devido a Johann Peter Gustav Lejeune Dirichlet, matemático alemão que viveu durante o século XIX:

П

Teorema 10. Sejam a e r números naturais primos entre si, isto é, tais que mdc(a, r) = 1. Então, a PA infinita

$$(a, a + r, a + 2r, a + 3r, \ldots)$$

possui infinitos números primos entre seus termos.

Uma vez que o conjunto dos naturais é uma PA infinita cujo primeiro termo (igual a 1) e razão (também 1) são primos entre si, vemos que o teorema de Dirichlet generaliza o teorema usualmente atribuído a Euclides, que garante que há infinitos primos. Ele também garante que há infinitos primos de cada uma das formas 3k+1, 3k+2, 4k+1, 4k+3, etc, haja vista que as PAs

$$(1,4,7,11,\ldots), (2,5,8,12,\ldots)$$

 $(1,5,9,13,\ldots), (3,7,11,15,\ldots)$

enquadram-se em suas hipóteses.

À demonstração do Teorema de Dirichlet é bastante difícil, e foge amplamente ao que podemos fazer aqui. De fato, mesmo o caso em que a=1, isto é, aquele da PA

$$(1, 1+r, 1+2r, \ldots)$$

tem demonstração bem difícil (que pode ser encontrada em [2]).

Talvez o leitor ache surpreendente saber que vale também o resultado a seguir, conhecido como o Teorema de Green-Tao e provado em 2004 pelo matemático inglês Ben Green e pelo matemátic australiano Terence Tao (de fato, esse teorema coroou a brilhante carreira de Terence Tao, que ganhou a Medalha Fields – considerada o Prêmio Nobel de Matemática – em 2006).

Teorema 11. Dado n > 2, existe uma PA $(a_1, a_2, ..., a_n)$ tal que todos os seus termos são primos.

A solução do Exemplo 8 mostra PAs formadas por 3 e 4 primos. Você consegue exibir uma formada por 5 primos?

Dicas para o Professor

Recomendamos que sejam utilizadas duas a três sessões de 50min para discutir todo o conteúdo deste material. O professor pode dedicar uma sessão para cada uma das duas primeiras seções, e uma terceira para apresentar o último exemplo da segunda seção, juntamente com os enunciados dos teoremas de Dirichlet e Green-Tao, discutindo casos particulares até certificar-se de que os estudantes compreenderam seus significados.

As referências colecionadas a seguir contém muitos exemplos e problemas, de variados graus de dificuldade, relacionados ao conteúdo do presente material.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matemática Elementar Volume 1: Números Reais, 2ª Edição. Rio de Janeiro, SBM, 2013.
- A. Caminha. Tópicos de Matemática Elementar Volume 6: Polinômios, 2ª Edição. Rio de Janeiro, SBM, 2016.
- 3. G. Iezzi, S. Hazzan. Os Fundamentos da Matemática Elementar, Volume 4: Sequências, Matrizes, Determinantes, Sistemas. São Paulo, Atual Editora, 2012.